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A concentrated electric current enters a region of fluid through an interface. 
It is shown that the magnetic field due to the current in general gives rise to 
rotational magnetic forces which must cause motions of the fluid. In particular 
the paper solves the axisymmetric non-linear problem in which a concentrated 
current enters a semi-infinite region of inviscid conducting fluid of constant 
density, inducing an inwards flow along the wall and a jet away from the wall 
opposite the current source. The case treated is the practically realistic one in 
which the effective magnetic Reynolds number is small and the current flows 
isotropically from the source. The first-order perturbation of this current dis- 
tribution by electromagnetic induction is also calculated. 

An analytical solution is possible because the non-linear equation of motion 
happens to  be a linear equation in the square of the Stokes stream function. 
The motion is analytically related to viscous jet flows discussed by Slezkin, 
Landau and Squire. 

I. Introduction 
Situations where a large electric current enters a body of conducting liquid or 

gas at a more-or-less concentrated point located on a plane boundary of the 
fluid are fairly common in electrotechnology. Sometimes the current is passing 
between a liquid and a gas, as in arc welding, arc furnaces or mercury arc recti- 
fiers. It has been recognized that the magnetic forces due to the magnetic field 
of the current can give rise to violent motions in the fluid or both fluids (see, 
for instance, Maecker 1955, Zhigulev 1960 and Amson 1965) but no adequate 
fluid mechanical investigation of the problem appears to have been undertaken. 
Apart from Zhigulev’s short note, theory hitherto has taken a primitive view 
of the mechanics, usually in terms of ‘magnetic pressure’, without adequate 
recognition that fluid pressure also acts and that therefore it is the rotationality 
of the magnetic force that determines the motion, at least if compressibility is 
unimportant and the fluid has no free surfaces and uniform density. When the 
surface is unconstrained, the interplay between magnetic forces and fluid 
pressure in the boundary condition makes the problem more complicated. As a 
first step towards understanding these important flows, we confine attention 
here to constant density flows with fixed boundaries and an axis of symmetry. 

(if spherical 
polar co-ordinates r ,  8 are used as in figure 1). At least in the vicinity of the fluid, 

The electric current is supplied through the wall where 8 = 
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the current must flow in an axisymmetric manner behind the wall so as to pre- 
serve the axisymmetry. Then the magnetic field B is purely azimuthal (of magni- 
tude B)  and it is easily verified that curl j x B is an azimuthal vector of magnitude 
2Bjs/s, where s is distance from the axis, j is the current density andj,9 its com- 
ponent normal to the axis. The direction of curl j x B is indicated by the circles 
bearing arrows in figure 1, and this holds whatever the direction of j, since B 
reverses if j does. By the same token, the effect occurs also with alternating 
current, unless modified by ‘skin effect’. Thus, wherever current lines diverge, 
vorticity is generated and one conjectures that motions such as those indicated 
by the dashed lines in figure 1 will occur. Zhigulev (1960) pointed out that the 
fluid could not remain a t  rest. 
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FIGURE 1 

An important point is that this phenomenon is essentially three-dimensional; 
the two-dimensional analogue does not exist, as Zhigulev remarked. Then the 
magnetic forces are impotent because 

curl j x B = 0, j x B = (B * grad)B/,u - grad B2/2p 

in the two-dimensional case. 
Many interesting equations immediately arise. Suppose, for instance, that 

the fluid is confined in a closed, axisymmetric container, within which it eddies 
round under the action of j x B forces, the flow being in meridional planes unless 
some instability sets in. It would be possible to  arrange for the current to be 
spreading everywhere withj, of constant sign, e.g. by the use of one large and one 
small electrode, so that vorticity generation is everywhere of the same sign. The 
circulating fluid would thus accelerate and could not reach a steady state unless 
some new mechanism intervened. Note that this acceleration would always 
happen, however feeble the current supply, provided one waited long enough. 
One possibility is that ultimately viscosity (or turbulence) would provide a brake, 
with boundary layers if the viscosity were relatively weak. Note, however, that 
the fluid would all have to enter the boundary layers somewhere to  lose the 
vorticity which it had gained from curl j x B throughout the fluid. A more subtle 
limiting mechanism, which might occur for other values of the prevailing para- 
meters, would be that the motion couldinduce e.m.f.s which strongly modified the 
current distribution so that curl j x B vanishedover large regions of the flow or even 
reversed locally, so that the fluid could settle down in a steady state of alternately 

for and B - grad = 0 
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gaining and losing vorticity. These remarks hint at  the existence of a whole 
range of apparently formidable non-linear problems. In  the welding application 
the acceleration process is terminated by the intermittent transfer of liquid metal 
drops from the electrode to the workpiece. 

This paper treats what must surely be the simplest configuration of this general 
kind. The current enters the fluid at  a point (the origin in figure 1). It is now 
assumed that the container is so large that the fluid can be regarded as coming 
from a region (8 near &n) where the fluid is virtually at rest and devoid of vor- 
ticity; also that the current is able to take whatever route is demanded by the 
problem to remote electrodes at  large r. The vorticity is continually being im- 
parted to fresh fluid and so a steady state can reasonably be sought. If the 
vorticity were rising, the general flow would be accelerating, so reducing the 
transit-time of fluid particles through the most active region near the origin until 
stable dynamic equilibrium was reached. The fact that the vorticity lines, which 
are azimuthal circles, are continually being shortened by the in-flow also should 
have a ‘subduing’ effect on the flow. It should not be necessary to invoke vis- 
cosity to achieve a steady state, and we shall therefore neglect it, for simplicity 
and to render the problem more tractable mathematically. 

2. Formulation of the problem 
It is convenient to express all quantities in terms of B, the magnetic field, and 

a Stokes stream function 9. Note that Bs/,u acts like a Stokes stream function 
with respect to current flow because the equation curl B = ,uj implies that 

ifzis the axial cylindrical polar co-ordinate (see figure 1) .  The fluid is assumed non- 
magnetic so that ,u takes its vacuum value. The components of velocity are given 

SV, = - a + l a ~ ,  SV, = ap/as. (2) 
bY 

The governing equations of steady inviscid MHD, after elimination of the electric 
field and the pressure, become 

,u‘~ curl v x B = curl curl B 

,up curl o x v = curl (curl B) x B, 

(3) 

( 4) and 

if r = conductivity (assumed uniform), p = density and o = curl v, the vor- 
ticity. The boundary conditions are that 9 = 0,  say, at  8 = 0 and in, that the 
vorticity tends to zero at large s, i.e. as 6-2 +n, that B = 0 at 6 = 0 (since a finite 
current filament along the axis could not persist in a finite conductor) and that 

Br = Bs = ,uJ/2n at 6 = in, ( 5 )  

J being the total current supplied through the origin to the fluid. Clearly v, 
must tend to zero on the axis for there are no fluid sources or sinks there, but 
singular behaviour at  the origin may be expected because of the infinite current 
density there. 

16-2 
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The problem is characterized by only three assignable magnitudes, namely 
pg, pp and p J ;  there is no length or velocity scale. There is, nevertheless, a 
characteristic dimensionless parameter, K = pJpg/(pp)* or pg Jg /p ) ,  which 
must govern the form of the solutions. The case of large K must be that where 
inertia is relatively unimportant and the fluid moves so nimbly that it convects 
the current flow into a form where curl j x B z 0 over most of the flow field 
in the absence of significant inertial resistance. This is the case discussed in- 
completely by Zhigulev (1960). 

The case of small K ,  on the other hand, must be the case where the sluggish 
fluid induces negligible e.m.f.8 and the current therefore spreads isotropically 
outwards from the origin, thereby determining the curl j x B field which drives 
the fluid motion. In  other words, K is a form of magnetic Reynolds number R,; 
we shall find that, a t  least at low K ,  the velocities are of order (J/r)(,u/p)*, 
so that R,, (=  pc~ x velocity x r )  becomes pcr x J(p/p)*, i.e. K.  Note that R,,, 
so defined, is the same throughout the field of flow and we do not have high 12, 
behaviour at large distances, low R, behaviour near the origin, as occurs in 
some problems. 

If we insert typical, reasonable magnitudes, whether for a liquid metal or an 
ionised gas, we find that K is usually very small compared with unity. It could 
only become large with hot, tenuous plasma having high u and low p, or in very 
high power devices involving liquid metals. In this paper we therefore concen- 
trate on the low K case where the magnetic field may be easily found first, and 
then the non-linear fluid mechanics solved subsequently. 

Further inferences may be extracted from the dimensional arguments. Both 
B and II. are functions of r ,  8, jm, pp and p J .  It proves more convenient to use 
c = cos 8 = x/r instead of 8 as a variable. It follows that the functions are such that 

and 

for dimensional consistency. Note the tactical choice of Bs but $1. in (6) and ( 7 ) .  
These equations indicate that the problem is self-modelling, and Bslp and $ / r  
are constant along rays of given inclination through the origin. Consequently 
the current always flows along these rays, whatever the value of K .  The radial 

( 8 )  
current density j ,  is given by j, = - Jf/r2, 

where a dot denotes differentiation with respect to c. Equation ( 7 )  is reminiscent 
of the self-similar, viscous, non-conducting flows solved by Slezkin, Landau 
and Squire and reviewed by Whitham (1963, pp. 150-155). The integrability of 
the equations in those cases gives us encouragement here. 

From (6) and ( 7 ) ,  the azimuthal component of (3) becomes 

f(1 -c2)2 = K{2cfg+  (1 - c 2 ) ( 2 f g + f g ) ) .  

w = - (ptJ/p*r2)(1 -@lag, 

(9) 

(10) 

a remarkably simple expression, which does not appear to have been referred to 

The vorticity w (in the azimuthal direction) is given by 
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in connexion with the earlier work on the viscous flows governed by relations 
like (7) .  From (lo) ,  the azimuthal component of (4) becomes 

2(1-c2)(gg+3gg) = (l-c”)d/dc)3g2 = 4ff. (11 )  

Thus the non-linear equation of motion is in fact a rather simple linear differen- 
tial equation in y2. 

3. Non-conducting flows 
I n  the absence of magnetic forces, equation ( 1  1) with f = 0 yields a family of 

ordinary, non-linear, axisymmetric, inviscid rotational flows. The solutions are 
of the form 

where A ,  B and C are constants. They should be compared with the corresponding 
family of potential flows derived from (9) with w set equal to  zero, so that 

(12) (1C.i~)~ cc 9’ = A c 2  + BC + C,  

g = Dc+E, (13 )  

with D and E constant. These solutions are those members of the family (12 )  
for which B2 = 4 A C .  They represent flows for which the streamlines are conics 
with the origin as focus and with their major axes in the z direction. 

4. Conducting flows with K < 1 
This is t,he case where the current and its magnetic field are expected to  be 

undisturbed by the motion, and the current flows isotropically outwards from 
the origin. This is confirmed when K is set equal to zero in (9), which then be- 
comes equivalent t o  the statement curl j = 0. Now f = const. and (8) indicates 
that  j ,  is independent of 8, as expected. From the boundary conditions (5) it 
foIlows that f = ( 1  - c ) /2n .  

The remaining task is t,o solve (1 1 )  which may now be written 

( 1 4 )  

This equation may be integrated three times to yield 

g2 = {Ac2 + BC + G - +( 1 + c)’ log ( 1 + c)}/n2, ( 16) 

and C must vanish because of the boundary condition g = 0 when c = 0. 
We next consider the approaching flow at large r ,  finite z and small c. With 

arbitrary values of B, g cc c-4 as c --f 0 and, from (lo), o IX r-8 at constant z as 
r - f o o ,  as it does also for those rotational flows (12 )  for which g = 0 when c = 0. 
As r+co along a streamline, w diverges without limit, however. I n  our problem 
we want the flow a t  large r and finite z to  approach an irrotational flow, with o 
falling to  zero faster than r-4 a t  large r and constant z .  One choice of B permits 
this, namely, B = b, so as t o  cancel the c term from the logarithm expression in 
(16). Then g+const. as c + O ,  and w cc r-2 at  constant z as r+m. Moreover it 



246 J. A .  Sherclifl 

will emerge later that the streamlines go to m at constant z. This choice evidently 
corresponds to the case of the fluid irrotational at  infinity. With B = &, (16) 
gives g x ( A  - $)*c, when c is small, which corresponds to that potential flow 
(13) for which g = 0 when c = 0. 

The constant A is determined by the condition that $ and hence g = 0 when 
c = l (r  finite). Hence A = 2 log 2 - 4, and our solution becomes 

9 2  = ((4 log 2 - 1) c2 + c - (1 + c)21og (1 + C))/27r? (17) 

One curiosity of the solution is that the sign of g and the direction of flow are 
arbitrary. The flow f rom the region of zero vorticity is the natural one to choose; 
this is the one for which g is positive since then v, is negative. In  priiiciple the 
reverse flow is possible, but it would involve the artificiality of fluid approaching 
with a very special distribution of vorticity which was then just destroyed by 
curl j x B. 

When c is small, the result (17) may be written 

or, approximately, g x 0 . 1 1 7 ~ .  Hence 

9 21 0.117(p*J/p*)z, 

which represents the approaching potential flow, with streamlines parallel to 
the wall with z constant. In  calculating values of g, (17) is ill-conditioned and 
(18) is useful at small values of c. Similarly, when c approaches 1, it is useful 
to express g in terms of e = 1 - c, as follows: 

Tg - ($-log2)4 1-  8($ -log 2) ...) 7 ( e(l -log 2, 
- 

(1 - C 2 ) t  

because @p*/sJ,uh = g / ( l  -c2)i. Near c = 1, e M +s2/z2 and we may deduce that 

V ,  x - (J/n)(p/p)g(i -log2)~2/8($-log2).t~3 
9 N" 0*076(,~* J/p*)s, (21) 

fl, 2 (Jh)(,u/P)* ($-log 2 w .  
3 

and 

From (21) we see that the streamlines become straight and parallel to the axis 
at small 8. Note that v, oc l/s, indicating a strong jet away from the wall with a 
singularity on the axis. This relatively weak singularity as s -+ 0 arises because the 
streamline $ = 0 passes through a region of infinite curl j x B at the origin. But 
us is not singular and there are no sources and sinks on the axis. 

Figure 2 shows some typical streamlines. The asymptotes of the streamline 

z-.8.55(@/J)(p/p)t as s+oo @ = const. are 

and s+13*2(@/J)(p/p)* as z+m. 

To establish practical orders of magnitude for the velocities, we may take, as 
typical values, J = 1 0 0 ~ 4 ,  p = lo3 Kg/m3 (a light liquid metal) and s = 1 ern = 

m. Then v, at large x equals 2.7 cm/sec with this relatively modest current 
level. Note, however, that in a finite system, the fluid could recirculate repeatedly 
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through the active region and attain very much higher velocities. In a gas the 
density would be much lower and the velocity higher. 

Figuse 2 reveals how the streamlines change rather abruptly from the con- 
verging, near-potential flow to the parallel, highly rotational, jet %ow. I n  the- 
former the fluid is accelerating because of the convergence, passing rapidly 
through the increasingly rotational j x B force field. This, combined with the 

tz 

- s-l 130 ,20 , I 0  Is 10 20 30 
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FIGURE 2 .  Typical streamlines at low K.  The numbers by the curves are the values of 
($ / J )  (p/,u)*, measured in the same length units as s and z. 

progressive shortening of vorticity lines, keeps the vorticity at low levels until 
suddenly the regime switches rapidly, with a swift rise in vorticity and curvature 
of the streamlines, and the fluid escapes into the region of weaker j x B forces 
a t  large z ,  preserving its vorticity, as the vorticity-line-shortening ceases. The 
vorticity history of particles traversing the streamline 1/. = const. is given by the 

as c and g vary. 

As a first step towards this we need the value of v, a t  the wall, which is 
Some interest attaches to  the pressure distribution along the wall at z = 0. 

4 
v = -”(”) $77 p ( 2 1 0 g 2 4 ) & ,  

from (18). On the streamline at the wall, the j x B force is normal since j is 
along the streamline, and so Bernoulli’s equation can be used for deducing the 
pressure p at the wall. The distribution is 

p = po - ks-2, ( 2 2 )  

where k = (pP/n-z)(log 2 - 8) and po is the pressure on the wall a t  large s. 
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In  a real situation the singularity of pressure at  s = 0 would be removed by 
the finite size of a real electrode, or by viscous effects, or (in a gas) by compressi- 
bility effects. In  a liquid the low pressures might conceivably cause intermittent 
cavitation, interrupting the current flow. The total force on the wall due to the 
pressure defect ICS-2 in ( 2 2 )  is a logarithmically divergent integral. So is the inte- 
gral of Maxwell's stress over the wall/fluid interface (i.e. the total reaction of the 
rest of the electric circuit on the currents in the fluid), and the integrated 2-wise 
momentum flux of the fluid as z + 00. It is, however, easily verified that the 'Max- 
well' force less the pressure-defect force equals the momentum flux and so no 
physical principle is offended. 

A worthwhile extension of the present work would be to allow for a viscous 
boundary layer on the wall and the viscous spreading of the jet along the z axis. 
Note that, because the magnetic Prandtl numberpcv is so small for real conduct- 
ing liquids, it is realistic to take the magnetic Reynolds number K as small but 
the effective viscous Reynolds number (J /v ) (p /p)+ as large. 

5. Perturbation of the current distribution 
Provided K is small it is possible to calculate the departure from isotropy of 

the radial current flow through the origin due to electromagnetic induction, 
using the known flow and magnetic fields given by equations (17) and (14). 
Equation (9) then gives 

.. K (4 log 2 - 2) ( 2 ~  + c2) (1 + c ) - ~  - log (1 + C) f=-- __ ~ 

2 4 2  m2 ((4 log 2 - 1)  c2 + c - (1 + c)210g (1 + c)}* ' 

which is subject to the boundary conditions f = Qm at c = 0, and f = 0 at c = 1. 
When c is small, (23) becomes 

K ( 2  log 2 -$)* ( 7210g 2 - 41 
f= 1-- 48 log 2 - 30 c...) m2 

and when c is near unity, with e = 1 - c, 

f=- - K ( #  - 2 log 2)* 
4n2s4 

Thusf becomes infinite as c+ 1 but f and f are finite, and soj, remains finite in 
this approximation, from (8). The solution of (23), found by numerical quad- 
rature, is 

f = (1 - c)/27T + Sf, 
where 8f/K is presented in figure 3 as a function ofc. Particular interest attaches 
to the values c = 0.281 and 0.896, or 8 = 73.7' and 26-4", at which Sf changes sign 
and the perturbation current changes from being inwards to  being outwards, 
as figure 4 shows. Thus the electromagnetic induction tends to shift the total 
current flow to  the wall and the axis, which encourages the conjecture that at 
high values of K the current might be confined wholly to the wall and axis. It is 
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not yet clear, however, how the changed current distribution alters the vorticity 
generation process. Zhigulev (1960) expressed the opinion that the current would 
be confined wholly to the axis at high K.  

O'OOo5 T 

-0 .001 

FIGGRE 3 

FIGURE 4. Perturbation currents at low K .  

6. Concluding remarks 
The analysis has revealed how the rotational j x B force field has the effect 

of sucking fluid in sideways and as Zhigulev remarked ejecting it as a jet normal 
to the interface. A version of this process also occurs in the more complicated 
situations that occur in practice, where the current often passes between two 
fluids, usually of very different and varying density, and where the current at the 
interface is not concentrated in a mathematical point and several length scales 
enter into the specification of the problem. It is evident that the simple mathe- 
matical procedures used here would be inadequate for such real problems, 
particularly when viscosity, surface tension, natural convection due to  ohmic 
heating and heat transfer play an important role. Many important questions 
remain unanswered: for example, when the fluid is finite in extent, can the re- 
circulating fluid attain such high velocities that the effective magnetic Reynolds 
number becomes large enough for the current flow pattern to be drastically 
altered by electromagnetic induction? The stability of the flow and of the jet 
in particular also await investigation. 

It is worth noting that in some of the applications, the vigorous motion induced 



250 J .  A .  Shedi f f  

in the fluid is a vital or desirable feature of the application, as, for instance, in 
metal transfer in arc-welding or stirring of the melt in arc furnaces. 

The flows discussed here belong to the general class of electrically-driven flows, 
one of the richer areas for investigation in MHD and of particular interest because 
it has no direct counterpart in ordinary fluid mechanics; the flows are not just 
ordinary motions modified by an imposed magnetic field. The present problem 
should be contrasted with those electrically-driven flows in which a magnetic 
field is imposed as well as imposed currents, as for instance in the work of Hunt 
& Malcolm (1968). 

Another classification of thc present study is to list it with those phenomena 
where the effect of the rotational j x B body force is wholly to create vorticity, 
in contrast to those more familiar cases in which its effect, some or all of the time, 
is to suppress vorticity. 
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grateful to  3. P. Lancaster for pointing out the importance of MHD effects 
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